ГОСТ 12.1.004-91 - Пожарная безопасность. Общие требования

2.1. Данные для расчета
В качестве пожароопасного объекта взят резервуар с нефтью объемом 20000 м3. Расчет ведется для нормальной эксплуатации технически исправного резервуара.
Средняя рабочая температура нефти Т=311 К. Нижний и верхний температурные пределы воспламенения нефти равны: Тн.п.в=249 К, Тв.п.в=265 К. Количество оборотов резервуара в год Поб=24 год-1. Время существования горючей среды в резервуаре при откачке за один оборот резервуара tотк=10 ч (исключая длительный простой). Радиус резервуара РВС=2000 R=22,81 м. Высота резервуара Hр=11,9 м. Число ударов молний п = 6 км-2×год-1. На резервуаре имеется молниезащита типа Б, поэтому bб=0,95.
Число искроопасных операций при ручном измерении уровня Nз.у = 1100 год-1. Вероятность штиля (скорость ветра и£1 м×с-1), Qш (u£1) = 0,12. Число включений электрозадвижек Nэ.з=40×год-1. Число искроопасных операций при проведении техобслуживания резервуара NТ.О=24 год-1. Нижний и верхний концентрационные пределы воспламенения нефтяных паров Си.к.п.в=0,02% (по объему), Си.к.п.в=0,1% (по объему). Производительность, операции наполнения g=0,56 м3×c-1. Рабочая концентрация паров в резервуаре С=0,4% (по объему). Продолжительность выброса богатой смеси tбог=5 ч.
2.2. Расчет
Так как на нефтепроводах средняя рабочая температура жидкости (нефти) выше среднемесячной температуры воздуха, то за расчетную температуру поверхностного слоя нефти принимаем .
Из условия задачи видно, что >в.к.п.в, поэтому при неподвижном уровне нефти вероятность образования горючей cмеси внутри резервуара равна нулю (ГС)=0, а при откачке нефти равна
.
Таким образом вероятность образования горючей среды внутри резервуара в течение года будет равна
.
Вычислим число попадании молнии в резервуар то формуле (5.1) приложения 3
.
Тогда вероятность прямого удара молнии в резервуар в течение года, вычисленная по формуле (49) приложения 3, равна
.
Вычислим вероятность отказа молниезащиты в течение года при исправности молниеотвода по формуле (52) приложения 3.

Таким образом, вероятность поражения молнией резервуара, в соответствии с формулой (48) приложения 3, равна

Обследованием установлено, что имеющееся на резервуаре защитное заземление находится в исправном состоянии, поэтому вероятность вторичного воздействия молнии на резервуар и заноса в него высокого потенциала равна нулю
Появление фрикционных искр в резервуаре возможно только при проведении искроопасных ручных операций при измерении уровня и отборе проб. Поэтому вероятность Qр(ТИ3) в соответствии с формулами (49 и 55) приложения 3 равна

В этой формуле Q(ОП) = 1,52×10-3 — вероятность ошибки оператора, выполняющего операции измерения уровня.
Таким образом, вероятность появления в резервуаре какого-либо теплового источника в соответствии с приложением 3 равна

Полагая, что энергия и время существования этих источников достаточны для воспламенения горючей среды, т. е. Qр(B) = l из приложения 3 получим Qр (ИЗ/ГС) = 5,4×10-3.
Тогда вероятность возникновения пожара внутри резервуара в соответствии с формулой (38) приложения 3, равна

Из условия задачи следует, что рабочая концентрация паров в резервуаре выше верхнего концентрационного предела воспламенения, т.е. в резервуаре при неподвижном слое нефти находится негорючая среда. При наполнении резервуара нефтью в его окрестности образуется горючая среда, вероятность выброса которой можно вычислить по формуле (42) приложения 3

Во время тихой погоды (скорость ветра меньше 1 м×с-1) около резервуара образуется взрывоопасная зона, вероятность появления которой равна

Диаметр этой взрывоопасной зоны равен

Определим число ударов молнии во взрывоопасную зону

Тогда вероятность прямого удара молнии в данную зону равна

Так как вероятность отказа молниезащиты Qр(t1) = 5×10-2, то вероятность поражения молнией взрывоопасной зоны равна

Откуда Qв.з(ТИ1)=7×10-3.
Вероятность появления около резервуара фрикционных искр равна

Наряду с фрикционными искрами в окрестностях резервуара возможно появление электрических искр замыкания и размыкания контактов электрозадвижек. Учитывая соответствие пополнения электрозадвижек категории и группе взрывоопасной смеси, вероятность появления электрических искр вычислим по формулам (49 и 54) приложения 3.

Таким образом, вероятность появления около резервуара какого-либо теплового источника в соответствии с приложением 3 составит значение

Полагая, что энергия и время существования этих источников достаточны для зажигания горючей среды, из формулы (49) приложения 3 получим при Qв=1

Тогда вероятность возникновения взрыва в окрестностях резервуара в соответствии с формулой (39) приложения 3 равна

Откуда вероятность возникновения в зоне резервуара либо пожара, либо взрыва составит значение

2.3. Заключение
Вероятность возникновения в зоне резервуара пожара или взрыва составляет 2,9×10-4, что соответствует одному пожару или взрыву в год в массиве из 3448 резервуаров, работающих в условиях, аналогичных расчетному.
3. Определить вероятность воздействия ОФП на людей при пожаре в проектируемой 15-этажной гостинице при различных вариантах системы противопожарной защиты.
3.1. Данные для расчета
В здании предполагается устройство вентиляционной системы противодымной защиты (ПДЗ) с вероятностью эффективного срабатывания R1=0,95 и системы оповещения людей о пожаре (ОЛП) с вероятностью эффективного срабатывания R2=0,95. Продолжительность пребывания отдельного человека в объекте в среднем 18 ч×сут-1 независимо от времени года. Статистическая вероятность возникновения пожара в аналогичных объектах в год равна 4×10-4. В качестве расчетной ситуации принимаем случай возникновения пожара на первом этаже. Этаж здания рассматриваем как одно помещение. Ширина поэтажного коридора 1,5 м, расстояние от наиболее удаленного помещения этажа до выхода в лестничную клетку 40 м, через один выход эвакуируются 50 человек, ширина выхода 1,21 м. Нормативную вероятность  принимаем равной 1×10-6, вероятность Рдв, равной 1×10-3.
3.2. Расчет
Оценку уровня безопасности определяем для людей, находящихся на 15-м этаже гостиницы (наиболее удаленном от выхода в безопасную зону) при наличии систем ПДЗ и ОЛП. Так как здание оборудовано вентиляционной системой ПДЗ, его лестничные клетки считаем незадымляемыми. Вероятность Qв вычисляем по формуле (33) приложения 2
.
Учитывая, что отдельный человек находится в гостинице 18 ч, то вероятность его присутствия в здании при пожаре принимаем равной отношению . С учетом этого окончательно значение будет равно 0,75×10-6, что меньше . Условие формулы (2) приложения 2 выполняется, поэтому безопасность людей в здании на случай возникновения пожара обеспечена. Рассмотрим вариант компоновки противопожарной защиты без системы оповещения. При этом время блокирования эвакуационных путей tбл на этаже пожара принимаем равным 1 мин в соответствии с требованиями строительных норм и правил проектирования зданий и сооружений. Расчетное время эвакуации tр, определенное в соответствии с теми же нормами, равно 0,47 мин. Время начала эвакуации tн.э, принимаем равным 2 мин. Вероятность эвакуации Pэ.п для этажа пожара вычисляем по формуле (5) приложения 2.
.
Вероятность Qв вычисляем по формуле (3) приложения 2.

Поскольку Qв>, то условие безопасности для людей по формуле (2) приложения 2 на этаже пожара не отвечает требуемому, — и, следовательно, в рассматриваемом объекте не выполняется при отсутствии системы оповещения.
4. Определить категорию и класс взрывоопасной зоны помещения, в котором размещается технологический процесс с использованием ацетона.
4.1. Данные для расчета
Ацетон находится в аппарате с максимальным объемом заполнения Vап, равным 0,07 м3, и в центре помещения над уровнем пола. Длина L1 напорного и обводящего трубопроводов диаметром d 0,05. м равна соответственно 3 и 10м. Производительность q насоса 0,01 м3×мин-1. Отключение насоса автоматическое. Объем Vл помещения составляет 10000 м3 (48х24х8,7). Основные строительные конструкции здания железобетонные, и предельно допустимый прирост давления  для них составляет 25 кПа. Кратность А аварийной вентиляции равна 10 ч-1.
Скорость воздушного потока и в помещении при работе аварийной вентиляции равна 1,0 м × с-1. Температура ацетона равна температуре воздуха и составляет 293 К. Плотность r ацетона 792 кг×м-3.
4.2. Расчет
Объем ацетона м3, вышедшего из трубопроводов, составляет

где t — время автоматического отключения насоса, равное 2 мин.
Объем поступившего ацетона, м3, в помещение
.
Площадь разлива ацетона принимаем равной 116 м2.
Скорость испарения (Wисп), кг×с-1×м, равна

Масса паров ацетона (Мп), кг, образующихся при аварийном разливе равна

Следовательно, принимаем, что весь разлившийся ацетон, кг, за время аварийной ситуации, равное 3600 с, испарится в объем помещения, т. е.

Стехиометрическая концентрация паров ацетона при b=4 равна

Концентрация насыщенных паров получается равной

Отношение Сн/(1,9×Сст)>1, следовательно, принимаем Z=0,3.
Предыдущая Вперед





Полезная информация: