Передача тепла через стены осуществляется главным образом вследствие теплопроводности. Количество тепла, проходящего через стену, зависит от коэффициента теплопередачи материала к. Чем он выше, тем больше теплоты проходит через материал и тем хуже его теплозащита (рис. 8.7.4). Различные строительные материалы имеют разные коэффициенты теплопередачи. На них влияют различные факторы, в частности, плотность и влажность материала.
Плотный материал имеет больший коэффициент теплопередачи по сравнению с пористым материалом. Увеличение плотности способствует повышению к. Уменьшение плотности приводит к снижению к. Это объясняется тем, что поры строительного материала заполнены воздухом, имеющим низкий коэффициент теплопередачи. Чем больше пор в материале, тем меньше его плотность и теплопроводность. Например, у железобетона плотностью 2500 кг/м3 коэффициент теплопередачи к=2,04 Вт/(м2*К); у кладки из обыкновенного глиняного кирпича плотностью 1800 кг/м3 -к = 0,81 Вт/(м2*К), у фанеры плотностью 600 кг/м3 — к = = 0,18 Вт/(м2*К), у плит из полистирольного пенопласта плотностью 100 кг/м3 - к = 0,05 Вт/(м2*К).
Коэффициент теплопередачи к - единица, которая обозначает прохождение теплового потока мощностью 1 Вт сквозь элемент строительной конструкции площадью 1 м2 при разнице температур наружного воздуха и внутреннего в 1 Кельвин Вт/(м2*К).
Сопротивление теплопередаче R0 — величина, обратная коэффициенту теплопередачи.
Влажность способствует повышению теплопроводности: сырой материал имеет больший коэффициент теплопередачи и обладает худшими теплозащитными характеристиками по сравнению с сухим. Это вызвано тем, что при увлажнении материала его поры заполняются водой, имеющей высокий коэффициент теплопередачи (приблизительно в 20 раз больший, чем воздух). Чем больше влаги впитывает материал, тем выше становится его теплопроводность. Например, при повышении влажности кирпичной стены толщиной 0,5 м из обыкновенного глиняного кирпича от нормальной, равной 2%, до 8%, ее теплозащита ухудшается более чем на 30%. И если при температуре внутреннего воздуха +20 °С и наружного —20 °С на поверхности сухой стены температура составляет 14,4 °С, то на сырой стене на 2,7 °С ниже и равняется 11,7 °С (рис. 8.7.6).
Рис. 8.7.6. Влияние влажности материала на теплозащитные свойства кирпичной стены: а — сухая стена, влажность материала 5%, б — сырая стена, влажность материала 15%
Поэтому для теплозащиты домов очень важно, чтобы строительный материал, и в первую очередь утеплитель, был обязательно сухим, а конструкции наружных ограждений были сделаны с таким расчетом, чтобы в них не образовывался конденсат, не скапливалась влага, приводящая к ухудшению теплоизоляционной способности стен, окон, чердачных перекрытий, полов первого этажа.
Таким образом, теплозащитная способность стены, ее сопротивление теплопередаче зависят от интенсивности передачи тепла на трех участках (у внутренней поверхности, в толще ограждения, у наружной, поверхности), каждый из которых имеет свое сопротивление. Общее сопротивление теплопередаче представляет собой их сумму (рис. 8.7.7).
Рис. 8.7.7. Сопротивление теплопередаче стены: 1 — теплообмен у внутренней поверхности стены, 2 — теплопередача через толщу ограждения, 3 — теплообмен у наружной поверхности стены, ав — коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(м2 • К), а„ — коэффициент теплоотдачи наружной поверхности ограждающей конструкции для зимних условий, Вт/(м2 • К)
Оконные проемы в общей площади наружных ограждений составляют значительно меньший процент по сравнению со стенами. Однако они имеют худшую теплозащиту: сопротивление теплопередаче оконного блока с двойным остеклением в 2—3 раза меньше, чем у наружных стен. Поэтому через окна теряется значительное количество теплоты: 20—30% всех теплопотерь дома.
На потери тепла через стены (и особенно через окна и стыки оконных коробок со стенами) сильное влияние оказывает ветер. Поскольку строительные материалы и конструкции являются в большей или меньшей степени воздухопроницаемыми, то через них воздух может проникать с улицы в помещение и из помещения на улицу. Если воздух попадает снаружи внутрь дома, то это называют инфильтрацией, если из помещения наружу, то эксфильтрацией.
При инфильтрации через конструкцию стены, стыки и неплотности окон в зимний период проникает холодный воздух. Проходя через толщу стены, он вызывает снижение температуры внутри ограждения и на его поверхности, а проникая в комнату, охлаждает внутренний воздух и вызывает дополнительные потери тепла. Наибольшие теплопотери при инфильтрации происходят через окна и стыковые соединения оконных блоков со стенами. В таблице 8.7.1 приведены теплопотери через наружные ограждения различных конструкций, включающие участок стены, оконный откос и окно при инфильтрации и без нее.
Таблица 8.7.1. Теплопотери через ограждения при инфильтрации и без нее
Вертикальная неоднородная ограждающая конструкция |
Температура на внутренней |
Теплопотери через наружное ограждение, Вг/м2 | ||
---|---|---|---|---|
|
поверхности оконного откоса, °С * |
Оконный откос |
Простенок стены |
Окно |
Керамзитобетонная (R0 =0,84 м2-К/Вт) с деревянным оконным блоком с двойным остеклением в спаренных переплетах (R0= 0,34 м2-К/Вт) |
10,1
7,8 |
48
98 |
52
61 |
145 233 |
Трехслойная керамзитобетонная панель толщиной 340 мм с утеплителем из полистирольного пенопласта и обрамляющими ребрами из керамзитобетона (Rо=1,91 м2-К/Вт) с деревянным оконным блоком с двойным остеклением в деревянных раздельных переплетах (Rо=0,38 м2К/Вт) |
13,7
9,1 |
27
61 |
26
27 |
132 284 |
Примечание: над чертой — без учета инфильтрации, под чертой — с учетом инфильтрации.
При эксфильтрации теплый воздух проходит из помещения через наружное ограждение, повышая температуру на его поверхности и в толще и способствуя увеличению теплопотерь жилым домом. Помимо, этого при эксфильтрации повыщается вероятность выпадения конденсата на стене, остеклении, оконных откосах и внутри ограждений.
Из таблицы 8.7.1. видно, что фильтрация воздуха приводит к увеличению теплопотерь через ограждения почти в 2 раза.
Потери тепла через перекрытия первого этажа в большинстве случаев составляют 3—10% общих теплопотерь. При строительстве дома необходимо качественно выполнить теплоизоляцию цокольного перекрытия и обеспечить на поверхности пола температуру не более чем на 2 °С ниже температуры внутреннего воздуха.
В холодное время года часть тепла теряется через крышу, причем в одноэтажных, двухэтажных домах потери больше, чем в многоэтажных. Они составляют соответственно 30—35 и 5—10%. Поэтому при проектировании и строительстве индивидуальных малоэтажных домов особое внимание должно быть уделено теплоизоляции перекрытия верхнего этажа или чердачного перекрытия. Часто на втором этаже индивидуального двухэтажного дома устраивают жилые комнаты — мансарды. В них крыша выполняет роль наружного ограждения, защищающего помещение от дождя, ветра, холода. Его хорошие теплоизоляционные качества создают уют и тепловой комфорт для живущих людей, снижают затраты на отопление дома, а в солнечную погоду позволяют защитить комнату от перегрева.
Каждая квартира оборудована системой естественной вытяжной вентиляции. Вентиляционные отверстия расположены в ванной комнате, в туалете и на кухне на внутренних стенах, в верхней их части, и прикрыты металлическими или пластмассовыми решетками. Это - вытяжные отверстия. Через них вытяжной воздух из помещений удаляется на улицу. По законам физики работа этой системы зависит от разности температуры в помещении и на улице, Чем ниже температура воздуха на улице, тем лучше она работает и больше теплого воздуха удаляется. На смену ему, благодаря создаваемому вытяжной вентиляцией разрежению в квартире через щели в окнах, открытые форточки, двери, поступает холодный наружный воздух. Причем в холодную пору года действительный объем вентиляции зачастую намного превышает требуемую норму, приводя к увеличению затрат на отопление, так как через систему вентиляции теплопотери составляют до 15%.
Таким образом, типовая структура расхода тепловой энергии зданием выглядит следующим образом:
— наружные стены: 35-45%;
— окна: 20-30%;
— вентиляция: 15%;
— горячая вода: 10%;
— крыша, пол: 5-10%;
— трубопровод, арматура: 2%.