ГОСТ Р 12.3.047-98 - Пожарная безопасность технологических процессов. Общие требования. Методы контроля
Предельные вероятности отказов конструкций в условиях пожаров рассчитывают по формуле
где Р0 — вероятность возникновения пожара, отнесенная к 1 м2 площади помещения;
РА — вероятность выполнения задачи (тушения пожара) автоматической установкой пожаротушения;
Рп.о — вероятность предотвращения развитого пожара силами пожарной охраны.
Р0 рассчитывают по методу, приведенному в ГОСТ 12.1.004, или берут из таблицы Л.2.
Таблица Л.2 — Вероятности возникновения пожара Р0 для промышленных помещений
Промышленный цех |
Вероятность возникновения пожара Р0, м/год · 10-5 |
По обработке синтетического каучука и искусственных волокон |
2,65 |
Литейные и плавильные |
1,89 |
Механические |
0,60 |
Инструментальные |
0,60 |
По переработке мясных и рыбных продуктов |
1,53 |
Горячей прокатки металлов |
1,89 |
Текстильного производства |
1,53 |
Электростанций |
2,24 |
Оценки РА берут из таблицы Л.3.
Таблица Л.3 — Вероятности выполнения задачи АУЛ РА
Тип АУП |
Вероятность выполнения задачи |
Установки водяного пожаротушения: спринклерные; дренчерные Установки пенного пожаротушения Установки газового пожаротушения с: механическим пуском; пневматическим пуском; электрическим пуском |
0,571 0,588 0,648
0,518 0,639 0,534 |
Рп.о устанавливают по статистическим данным или расчетом с учетом установки автоматических средств обнаружения пожара, сил и средств пожарной охраны. В случае отсутствия данных по пожарной охране и системе пожарной сигнализации следует положить Рп.о
По вычисленным значениям определяют значение характеристики безопасности при необходимости интерполируя данные таблицы Л.4.
Таблица Л.4— Значения характеристики безопасности Р
Вероятность отказов конструкций при пожаре |
Характеристика безопасности b |
Вероятность отказов конструкций при пожаре |
Характеристика безопасности b |
|
3,7 4,1 4,4 4,5 |
|
2,3 2,8 3,2 3,5 |
|
3,1 3,5 3,8 4,0 |
|
1,3 2,0 2,5 2,6 |
Л.1.3 Расчет коэффициента огнестойкости К0 проводят по формуле
К0 = 0,527 ехр (0,36 b). (Л.8)
В качестве примера в таблице Л.5 приведены значения К0 для условий Р0 = 5 · 10-6 м2/год и РА = 0,95, Рп.о = 0.
Таблица Л.5 — Коэффициент огнестойкости К0
Площадь отсеков S, м2 |
Вертикальные несущие конструкции, противопожарные преграды, балки, перекрытия, фермы |
Другие горизонтальные несущие конструкции, перегородки |
Прочие строительные конструкции |
1000 2500 5000 7500 10000 20000 |
1,36 1,52 1,69 1,79 1,84 2,03 |
0,99 1,14 1,26 1,31 1,42 1,47 |
0,58 0,75 0,87 0,94 0,99 1,10 |
Л.1.4 Требуемый предел огнестойкости t0 рассчитывают по вычисленным значениям tэ, и К0
t0 = К0. (Л.9)
Примеры
1 Определить требуемую огнестойкость железобетонной плиты перекрытия над участком механического цеха при свободном горении 100 кг индустриального масла на площади F= 3 м2. Размеры помещения 18 х 12 х 4 м, в помещении есть проем с размерами 4 х 3 м. Принять, что допустимая вероятность отказов Рдоп равна 10-6.
Расчет
Из справочников найдем, что скорость выгорания масла Мср = 2,7 кг/(м2·мин). Тогда вычислим продолжительность локального пожара tп по формуле (Л.6)
tп = 100 / (3 · 2,7) » 12,4 мин.
Проемность П в случае локального пожара определим по формуле (Л.4)
П = 4 / » 2,3.
Теперь найдем эквивалентную продолжительность пожара tэ Для железобетонной плиты перекрытия при горении индустриального масла. По рисунку Л.4 получим tэ < 0,5 ч. Согласно условию задачи РA = Pп.о =0, а по таблице Л.2 находим Р0 = 0,6 · 10-5 м2/год. Тогда предельная вероятность Рп, вычисленная по формуле (Л.6), равна:
Рп = 10-6 / (6 · 10-6 · 18 · 12) » 7,7 ·10-4.
Интерполируя данные таблицы Л.4, находим, что b»3,1. Теперь вычислим коэффициент огнестойкости по формуле (Л.8):
К0 = 0,527 ехр (0,36 · 3,1) » 1,6.
Требуемый предел огнестойкости t0 равен:
t0 < 1,6 · 0,5 = 0,8 ч.
2 Определить требуемую огнестойкость железобетонной плиты перекрытия над участком механического цеха в условиях объемного пожара при свободном горении древесины с плотностью нагрузки 20 кг · м-2. Размеры помещения 18 х 12 х 4 м, в помещении есть проем с размерами 4 х 3 м. Принять Рдоп = 10-6 м 2/год.
Расчет
Определим фактор проемности П. Объем V помещения равен
V = 18 · 12 · 4 = 864 м3 < 1000м3.
Тогда по формуле (Л.3) получаем
П = 4 · 3 » 0,23.
Характерную продолжительность пожара вычислим по формуле (Л.4). Общее количество пожарной нагрузки G равно
G = 20 · 18 · 12 = 4320 кг.
По формуле (Л.4) определяем, что
tп = 4320 · 13,8 / (6285 · 12 ·) » 0,46 ч.
По рисунку Л.7 определяем эквивалентную продолжительность пожара tэ для железобетонной плиты перекрытия при вычисленных значениях П и tп Получаем, что tэ » 0,8 ч. С учетом вычисленного в примере 1 значения К0 найдем требуемый предел огнестойкости t0:
t0 = 1,6 · 0,8 » 1,3ч.
ПРИЛОЖЕНИЕ М
(рекомендуемое)
МЕТОД РАСЧЕТА РАЗМЕРА СЛИВНЫХ ОТВЕРСТИЙ
М.1 Введение
M.I.I Настоящий метод устанавливает порядок расчета площади сливного отверстия в ограничивающем жидкость устройстве (поддоне, отсеке, огражденном бортиками участке цеха, производственной площадке и т.п.), при котором исключается перелив жидкости через борт ограничивающего устройства и растекание жидкости за его пределами.
М. 1.2 В расчете учитывают поступление горючей жидкости в поддон из аппарата в момент его аварийного вскрытия, воды от установки пожаротушения и выгорание жидкости с поверхности поддона.
М.1.3 В методике расчета приняты следующие предположения:
- при возникновении аварийной ситуации герметичность стенок аппарата не нарушается;
- разрушаются только патрубки, лежащие ниже уровня жидкости в аппарате, образуя сливные отверстия, равные диаметру патрубков;
- вероятность одновременного разрушения двух патрубков мала;
- давление паров над поверхностью жидкости в аппарате в процессе слива жидкости не меняется.
М.2 Расчет площади сливных отверстий
М.2.1 Для проведения расчета необходимо знать:
- количество трубопроводов п, расположенных ниже уровня горючей жидкости в аппарате, и площадь их поперечного сечения s, м2;
- площадь поперечного сечения аппарата Fa, м2;
- высоту уровня жидкости над трубопроводами Н, м;
- высоту борта поддона L, м;
- интенсивность орошения водой, подаваемой из установок пожаротушения, площади поддона I, кг/(м2 · с);
- скорость выгорания горючей жидкости W, кг/(м2 · с);
- избыточное давление в аппарате над поверхностью жидкости р, Н/м2.
Целью расчета является выбор площади поддона Fп, м2, и расчет площади сливного отверстия f м2.
М.2.2 По заданным исходным данным определить начальные расходы Qi, м3/с, жидкости из аппарата через отверстия, равные сечению трубопроводов, расположенных на аппарате, по формуле
где ji = 0,65 — коэффициент истечения жидкости через отверстие;
si — площадь сечения i-го трубопровода;
g— ускорение силы тяжести, равное 9,81 м/с2;
Нi — высота уровня жидкости над i-м трубопроводом.
М.2.3 По наибольшему из вычисленных начальных расходов Qм выбрать площадь отверстия в аппарате о- и высоту уровня жидкости над ним Н0.
М.2.4 Из конструктивных соображений выбрать площадь поддона Fп, м2.
М.2.5 Определить т
, (M.2)
где hmax = 0,8L — максимально допустимый уровень жидкости в поддоне.
М.2.6 Вычислить объем жидкости, поступающей в поддон в единицу времени от установки пожаротушения (с учетом выгорания горючей жидкости) Q0, м3/с, по формуле
, (М.3)
где r — плотность огнетушащей жидкости, кг/м3.
При отсутствии данных по скорости выгорания W сследует положить равной нулю.
М.2.7 Если т < 1, то площадь сливного отверстия определить по формуле
. (М.4)
M.2.8 При т ³ 1 порядок расчета f следующий:
М.2.8.1 Определить напор, создаваемый сжатыми газами в аппарате
, (М.5)
где r — плотность воды, кг/м3.
М.2.8.2 Вычислить значение параметра
(М.6)
где Qmax - максимальный расход жидкости из аппарата, определяемый по М.2.2.
М.2.8.3 По b с помощью таблицы М.1 необходимо найти а. Если данных таблицы М.1 для определения а недостаточно, то а определяют путем решения системы уравнений
(М.7)
Таблица M.1— Зависимость параметра а от b
а |
b |
а |
b |
а |
b |
а |
b |
0,000 |
0,000 |
0,990 |
0,993 |
3,107 |
1,901 |
14,999 |
3,408 |
0,071 |
0,106 |
1,000 |
1,000 |
3,418 |
1,987 |
16,573 |
3,506 |
0,170 |
0,241 |
1,045 |
1,030 |
3,762 |
2,075 |
18,313 |
3,605 |
0,268 |
0,361 |
1,081 |
1,053 |
4,144 |
2,164 |
20,236 |
3,705 |
0,362 |
0,467 |
1,185 |
1,117 |
4,568 |
2,255 |
22,362 |
3,804 |
0,454 |
0,560 |
1,255 |
1,158 |
5,037 |
2,347 |
24,711 |
3,903 |
0,540 |
0,642 |
1,337 |
1,205 |
5,557 |
2,440 |
27,308 |
4,003 |
0,622 |
0,714 |
1,433 |
1,256 |
6,132 |
2,534 |
30,178 |
4,102 |
0,697 |
0,777 |
1,543 |
1,313 |
6,769 |
2,628 |
33,351 |
4,219 |
0,765 |
0,831 |
1,668 |
1,374 |
7,473 |
2,725 |
36,857 |
4,302 |
0,853 |
0,877 |
1,810 |
1,439 |
8,253 |
2,821 |
40,732 |
4,401 |
0,876 |
0,915 |
1,971 |
1,509 |
9,115 |
2,918 |
45,014 |
4,501 |
0,921 |
0,946 |
2,151 |
1,581 |
10,068 |
3,015 |
54,978 |
4,701 |
0,955 |
0,970 |
2,352 |
1,657 |
11,121 |
3,113 |
67,148 |
4,901 |
0,980 |
0,980 |
2,575 |
1,736 |
12,287 |
3,211 |
74,210 |
5,000 |
0,986 |
0,986 |
2,828 |
1,817 |
13,575 |
3,309 |
|
|
M.2.8.4 Рассчитать f м3, по формуле
. (М.8)
Полезная информация: